A fecal coliform (sometimes faecal coliform) is a facultatively-anaerobic, rod-shaped, gram-negative, non-sporulating bacterium. Fecal coliforms are capable of growth in the presence of bile salts or similar surface agents, are oxidase negative, and produce acid and gas from lactose within 48 hours at 44 ± 0.5°C.[1]
Coliform bacteria include genera that originate in feces (e.g. Escherichia) as well as genera not of fecal origin (e.g. Enterobacter, Klebsiella, Citrobacter). The assay is intended to be an indicator of fecal contamination; more specifically of E. coli which is an indicator microorganism for other pathogens that may be present in feces. Presence of fecal coliforms in water may not be directly harmful, and does not necessarily indicate the presence of feces.[1]
Contents |
In general, increased levels of fecal coliforms provide a warning of failure in water treatment, a break in the integrity of the distribution system, or possible contamination with pathogens. When levels are high there may be an elevated risk of waterborne gastroenteritis. Tests for the bacteria are cheap, reliable and rapid (1-day incubation).
The presence of fecal coliform in aquatic environments may indicate that the water has been contaminated with the fecal material of humans or other animals. Fecal coliform bacteria can enter rivers through direct discharge of waste from mammals and birds, from agricultural and storm runoff, and from human sewage. However, their presence may also be the result of plant material, and pulp or paper mill effluent.[1]
Failing home septic systems can allow coliforms in the effluent to flow into the water table, aquifers, drainage ditches and nearby surface waters. Sewage connections that are connected to storm drain pipes can also allow human sewage into surface waters. Some older industrial cities, particularly in the Northeast and Midwest of the United States, use a combined sewer system to handle waste. A combined sewer carries both domestic sewage and stormwater. During high rainfall periods, a combined sewer can become overloaded and overflow to a nearby stream or river, bypassing treatment.
Pets, especially dogs, can contribute to fecal contamination of surface waters. Runoff from roads, parking lots, and yards can carry animal wastes to streams through storm sewers. Birds can be a significant source of fecal coliform bacteria. Swans, geese, seagulls, and other waterfowl can all elevate bacterial counts, especially in wetlands, lakes, ponds, and rivers.
Agricultural practices such as allowing livestock to graze near water bodies, spreading manure as fertilizer on fields during dry periods, using sewage sludge biosolids and allowing livestock watering in streams can all contribute to fecal coliform contamination.
Large quantities of fecal coliform bacteria in water are not harmful according to some authorities, but may indicate a higher risk of pathogens being present in the water.[2] Some waterborne pathogenic diseases that may coincide with fecal coliform contamination include ear infections, dysentery, typhoid fever, viral and bacterial gastroenteritis, and hepatitis A. The presence of fecal coliform tends to affect humans more than it does aquatic creatures, though not exclusively.
Untreated organic matter that contains fecal coliform can be harmful to the environment. Aerobic decomposition of this material can reduce dissolved oxygen levels if discharged into rivers or waterways. This may reduce the oxygen level enough to kill fish and other aquatic life. Reduction of fecal coliform in wastewater may require the use of chlorine and other disinfectant chemicals. Such materials may kill the fecal coliform and disease bacteria. They also kill bacteria essential to the proper balance of the aquatic environment, endangering the survival of species dependent on those bacteria. So higher levels of fecal coliform require higher levels of chlorine, threatening those aquatic organisms.
Fecal coliform, like other bacteria, can usually be inhibited in growth by boiling water or by treating with chlorine. Washing thoroughly with soap after contact with contaminated water can also help prevent infections. Gloves should always be worn when testing for fecal coliform. Municipalities that maintain a public water supply will typically monitor and treat for fecal coliforms.
In waters of the U.S., Canada and other countries, water quality is monitored to protect the health of the general public. Bacteria contamination is one monitored pollutant. In the U.S., fecal coliform testing is one of the nine tests of water quality that form the overall water-quality rating in a process used by U.S. EPA. The fecal coliform assay should only be used to assess the presence of fecal matter in situations where fecal coliforms of non-fecal origin are not commonly encountered.[1] EPA has approved a number of different methods to analyze samples for bacteria. [3]
Bacteria reproduce rapidly if conditions are right for growth. Most bacteria grow best in dark, warm, moist environments with food. Some bacteria form colonies as they multiply which may grow large enough to be seen. By growing and counting colonies of fecal coliform bacteria from a sample of water, the amount of bacteria originally present can be determined.
Membrane filtration is the method of choice for the analysis of fecal coliforms in water. Samples to be tested are passed through a filter of particular pore size (generally 0.45 micrometre). The microorganisms present in the water remain on the filter surface. When the filter is placed in a sterile petri dish and saturated with an appropriate medium, growth of the desired organisms is encouraged, while that of other organisms is suppressed. Each cell develops into a separate colony, which can be counted directly, and the results calculated as microbial density. Sample volumes of 1 ml and 10 ml will be used for the water testing, with the goal of achieving a final desirable colony density range of 20 to 60 colonies per filter. Contaminated sources may require dilution to achieve a "countable" membrane.
A 100 ml volume of a water sample is drawn through a membrane filter (0.45 µm pore size) through the use of a vacuum pump. The filter is placed on a petri dish containing M-FC agar and incubated for 24 hours at 44.5 °C (112.1 degrees F). This elevated temperature heat shocks non-fecal bacteria and suppresses their growth. As the fecal coliform colonies grow they produce an acid (through fermenting lactose) that reacts with the aniline dye in the agar thus giving the colonies their blue color.
Newer methods for coliform detection are based on specific enzyme substrates as indicators of coliforms. These assays make use of a sugar linked to a dye which, when acted on by the enzyme beta-galactosidase, produces a characteristic color. The enzyme beta-galactosidase is a marker for coliforms generally and may be assayed by hydrolysis of the sugar glucoside o-nitrophenyl-beta-D-galactose. Assays typically include a second sugar linked to a different dye which, when acted on by the enzyme beta-glucuronidase, produces a fluorescent product. Because E. coli produces both beta-galactosidase and beta-glucuronidase, a combination of these two dyes makes possible the unique ability to use one test to differentiate and quantify coliforms and E. coli.
The 1989 EPA Total Coliform Rule (TCR) imposed major monitoring changes for public water systems.[4] The testing requirements for drinking water under the TCR are markedly increased over previous requirements and thus are more thorough. Not only is the number of routine coliform tests increased, especially for smaller water utilities, but the regulation also requires automatic repeat testing from all sources that show a total coliform positive (known as triggered source water monitoring).
As of 2009, EPA is working on revisions to the TCR. Issues being considered by the Agency include sampling locations, sampling frequency and timing, analytical methods and corrective actions to be taken by public water systems.[5]